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Abstract: The use of drones in animal monitoring programs has two significant limitations. First, 18 

the increase of information requires a high capacity of storage, and second, time invested in data 19 

analysis. We present a protocol to develop an automatic object recognizer to minimize analysis time 20 

and optimize data storage. We used a Black-necked swan (Cygnus melancoryphus) as a model because 21 

it is abundant and has a contrasting color compared to the environment, making it easy detection. 22 

We conducted this study at the Cruces River, Valdivia, Chile, using a Phantom 3 Advanced drone 23 

with an HD-standard camera. The drone flew 100 m obtaining georeferenced images with 75% over- 24 

lap and developing approximately 0.69 km2 orthomosaics images. To build the recognizer, we esti- 25 

mated the swans' spectral signature and adjusted nine criteria for object-oriented classification. We 26 

obtained 140 orthophotos classified into three brightness categories. We found a Precision, Sensi- 27 

tivity, Specificity, and Accuracy higher than 0.93 and a calibration curve with R2= 0.991 for images 28 

without brightness. The recognizer prediction decreases with brightness but is corrected using 29 

ND8-16 filter lens. We discuss the importance of this recognizer to data analysis optimization and 30 

the advantage of using this recognition protocol for any object in ecological studies. 31 

Keywords: Automatic recognition; UAV; Black-necked swan; Abundance and density estimation; 32 

orthomosaic object recognition 33 

 34 

1. Introduction 35 

Ecological monitoring programs are essential to understanding the population dy- 36 

namics of different species worldwide. These monitoring programs allow researchers to 37 

describe natural patterns or detect disturbances, generating information to develop effi- 38 

cient management tools and knowledge-based decision-making [1-4]. New technologies 39 

improve the data collection quantity and quality from natural systems, increasing the pre- 40 

cision and exactitude of measures to establish better monitoring programs [4,5]. Remote 41 

sensing techniques allow obtaining information from isolated places, reducing sampling 42 

time and effort, and increasing the collected information's Accuracy [6,7]. Additionally, 43 

remote sensing can provide consistent long-term observation data at different scales, from 44 

local to global [8]. The information generated from these remote sensors depends on the 45 

sensor incorporated and on the characteristics of the images it produces, like a) spatial 46 
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resolution (pixel size), b) spectral resolution (wavelength ranges), c) temporal resolution 47 

(when and how often images are collected), and d) spatial extent (ground area repre- 48 

sented) [9]. 49 

 50 

Unmanned Aerial Vehicles (UAV) or drones have rapidly grown over the years be- 51 

cause of their accessibility, low-cost operation, versatility in size, flight autonomy, and the 52 

type of information they can collect [10,11]. This approach has been increasing the number 53 

of applications, including monitoring processes in agriculture, forestry, and ecology [12- 54 

18]. In this sense, monitoring programs have benefited from drones' advantages, mainly 55 

because of the replicability of flight paths and the lower sampling effort, making more 56 

attainable time-series data [16] 57 

 58 

Although the use of drones improves the accuracy of the spatial information obtained 59 

[19, 5, 20], the increase in data collection and the time invested in data analysis can turn 60 

into a significant disadvantage [21,19, 22]. In response to this problem, automation in the 61 

processing and analyzing of images is a recent and promising research area [23]. This pro- 62 

cess generates multiple benefits, mainly reducing the time invested in analyzing photo- 63 

graphs and videos and reducing or eliminating the bias generated by the observer [22]. 64 

Being an automatic process, it has the potential to be standardized and replicable [21]. 65 

Also, most of the parameters in the algorithms can be modified and used with different 66 

UAVs, focal species, and research for various purposes [21]. 67 

 68 

Most automatic recognition methods involve the use of spectral properties [24]; pat- 69 

tern recognition (i.e., shape and texture; [25]), and the use of filters to increase the contrast 70 

between the object of interest and the background [26]. These methods allow the system- 71 

atic monitoring of multiple species and reduce the analysis time [27], optimizing the early 72 

detection of wildlife changes and contributing to evaluating conservation measures' effec- 73 

tiveness [7]. This study develops and describes an automatic count protocol of black- 74 

necked swans (Cygnus melancoryphus) under natural conditions. We used UAV imagery 75 

and supervised classification methods to establish the spectral signature of black-necked 76 

swans and the shape attributes and propose this protocol as a tool for automatic classifi- 77 

cation of any object (individual) to be recognized from UAV imaginary.  78 

 79 

Materials and Methods 80 

2.1 Model and study area 81 

The black-necked swan is an aquatic bird of the Anatidae family and the only species of 82 

the genus Cygnus in the Neotropics [28]. Its distribution includes Argentina, Chile, Uru- 83 

guay, and southern Brazil [28, 29]. This species is a medium size (5-7 kg) herbivorous bird 84 

whose diet is strongly related to the consumption of Egeria densa [30]. Black-necked swans 85 

are highly social and gregarious outside the breeding season, between July and March 86 

[31]. In the IUCN Red List of Threatened Species [29], the black-necked swan is classified 87 

as Least Concern, but the Chilean classification has different conservation status catego- 88 

ries (Endangered and Vulnerable). In the study site, the black-neck swan is classified as 89 

Endangered. 90 

We carried out this study at the Carlos Anwandter Sanctuary (39º49'S, 73º15'W), a 48.8 91 

km² coastal wetland located in the southern range of the Valdivian Temperate Rain For- 92 

ests Ecoregion, Chile [32, 33]. In addition, we incorporated two sites in the Cruces River 93 

close to Valdivia city (Figure 1). We selected three sites where we performed 110 survey 94 

missions (48 for site 1, 44 for site 2, and 18 for site 3) between July 2017 and October 2018, 95 
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using a Phantom 3 Advanced drone, with an HD standard camera recorder (Sony Exmor 96 

R BSI 1/2.3" sensor with 12 MP). We obtained the image following a pre-established back- 97 

and-forth route (transect) using the MyPilot application (https://www.mypilotapps.com). 98 

The drone flew 100 m above the water mirror level, obtaining georeferenced images with 99 

75% overlap at both axes for orthophotograph construction (Figure 2). During each sur- 100 

vey, we obtained 370 ± 90 (mean±1 SD) images with a surface of 0.69 km2 by image and a 101 

pixel resolution of 3.854± 0.135 (mean±1 SD) cm. For orthophotograph construction, each 102 

set of images (one set for the survey mission) was mosaiced using an online version of the 103 

Dronedeploy software (https://www.dronedeploy.com). Orthophotos are composed of 3 104 

bands: red, green, and blue (RGB color model) within the visible spectrum (740 to 380 nm 105 

λ).  106 

 107 

Figure 1. Study area. Geographic location of the study area. The area within squares represents each 108 
sampling site, orange corresponds to site 1, yellow corresponds to site 2 and green corresponds to 109 
site 3. 110 

2.2 Building the recognizer 111 

The first step in developing the automatic recognizer was to describe the black-necked 112 

swans' spectral signature. We randomly selected 14 out of 110 orthophotos, and we man- 113 

ually selected ten individuals (140 total) for each. We recorded the range of spectral values 114 

for each pixel in each band for each selected individual. We determined the minimum 115 

threshold value for defining a black-necked swan in a band as the first quartile of the 116 

distribution of the spectral values in each band. According to the previous configuration, 117 

we filtered each orthophoto. If the pixel shows values higher than the threshold in all 118 

bands, it was classified as 1 and 0 otherwise. Finally, we vectorized the raster obtaining a 119 

vector layer where each polygon represents a swan.  120 
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 121 

Figure 2. Steps for obtaining orthophotographs. (a) Example for the sampling site number 2, (b) the 122 
design of the flight transects, (c) the superimposition of the obtained images and (d) the creation of 123 
the orthophotography in the DroneDeploy software. 124 

In a second step, we established an Object-oriented classification. We selected nine attrib- 125 

utes of the shape. We classified these measures into three groups, following a hierarchical 126 

procedure from groups 1 to 3. Group 1 included polygons: a) Size, b) Perimeter, c) 127 

Area/Perimeter ratio, and d) Shape index, defined as ((4π* Area) / (Perimeter2)), where 128 

values close to 0 correspond to more prolonged and thinner figures, and values close to 1 129 

resemble a circle [34]. Group 2 included a) Box's length, the minimum bounding box's 130 

length that contains the polygon, b) Box's wide, the minimum bounding box's width that 131 

contains the polygon, and c) Box's Length/Width, i.e., the quotient between the length and 132 

the width of the box, and d) Intersection area, corresponds to the percentage of the box 133 

intersected by the object. Group 3 included a) Vertices number of the polygon. To optimize 134 

the procedure, we used the first 14 orthophotos (140 individuals) and considered each 135 

measure's maximum and minimum value to incorporate in the recognizer. 136 

2.3 Evaluating the accuracy of the recognizer and confusion matrix 137 

Using the results from the previous steps, we applied the filter to the remaining 96 ortho- 138 

photos to obtain the number and spatial position of the classified "swans" objects. We per- 139 

formed the analyses using QGis 2.18 [35] and the R software [36], including the packages 140 

Raster [37], rgdal [38], geosphere [39], spatstat [40], maptools [41], gdalUtils [42], rgeos 141 

[43], spatialEco [44] and R.utils [45]. We include the R code for the analysis in the supple- 142 

mentary material (SM). 143 

Due to the water brightness, overexposed or badly reconstructed areas can appear in or- 144 

thophotos; we classified the orthophotos into three classes following Chabot and Francis 145 

(2016) [22]: a) 0, there was no brightness, b) 1, there was localized brightness, and c) 2, the 146 

brightness was present throughout the orthophoto (Figure 3). We performed an inde- 147 

pendent analysis for each of the three categories. 148 

 149 

 150 
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 151 

Figure 3. Brightness orthophoto classification. (a) Category 0, there was no brightness, (b) Category 152 
1, there was localized brightness, and (c) Category 2, the brightness was present throughout the 153 
orthophoto. 154 

To evaluate the validity of the filtering procedures, we constructed a confusion matrix 155 

[46]. We manually checked all objects recognized by the filters in each of the 96 orthopho- 156 

tographs. We estimate True-Positive object (TP) as the object correctly assigned as black- 157 

necked swans; False-Positive object (FP), corresponding not black-necked swans object, 158 

that recognizer assigned as swans; and False-Negative (FN), missing black-necked swans 159 

archived in the orthophoto, but not recognized by the recognizer. In addition, we esti- 160 

mated the true negative as the number of objects recognized by the spectral signature but 161 

rejected by the shape filters (TN). We estimated confusing matrix indicators including: 162 

Precision = TP/(TP + FP), Sensitivity = TP/(TP + FN), Specificity = TN/(TN + FP), and Ac- 163 

curacy = (TP + TN)/(TP + TN + FP + FN). Finally, we compared the manual count and 164 

recorder estimates in each orthophoto classification fitting linear regression model using 165 

R software [36]. 166 

  167 

3. Results 168 

3.1.1 Filtering process 169 

The minimum critical thresholds for the black-necked swans' coloration corresponded to 170 

220 for the red, 221 for the green, and 221 for the blue bands (Figure 4). We summarized 171 

the specific range estimated for each shape attributed in Table 1.  172 

Table 1. Shape attribute values. Lower and upper limit of the range in which an object is classified 173 
as a Swan for each shape attribute used in the recognizer. 174 

Shape attributed Lower limit Upper limit 

Size  0.0111562 0.5501689 

Perimeter 0.6220029 4.8082500 

Area/Perimeter ratio 0.0179360 0.1476506 

Shape index 0.2166254 0.6981190 

Box's length 0.2144787 1.1876790 

Box's wide 0.1367180 0.8679846 

Box's Length/Width 1.0001040 3.7119470 

Intersection area 30.7244900 88.3788400 

Vertices 11 72 

 175 

 176 
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3.1.2 Confusion matrix 177 

Concerning the brightness of the images, we classified 29 orthophotos in category 0, 14 in 178 

category 1, and 67 in category 2, representing 26.4 %, 12.7%, and 60.9%, respectively. From 179 

the 29 orthophotos classified as category 0, the recognizer found a total of 17345 objects, 180 

while by direct count, we found 16940 black-necked swans. In this case, the Precision, 181 

Sensitivity, Specificity, and Accuracy were higher than 0.93 (Table 2). In the 14 182 

orthophotos classified as category 1, the recognizer found 10345 objects, while we 183 

estimated 7228 individuals by direct count. Sensitivity, Specificity, and Accuracy 184 

remained at high values (<0.90), but the Precision decreased to 0.687 (Table 2). The 185 

recognizer in category 2 orthophotos assigned 757958 objects as black-necked swans, 186 

while we estimated 26584 individuals by manual count. Precision decreased at 0.033, 187 

showing very bad object estimations (Table 2). In this case, the recognizer overestimates 188 

the FP, assigning a high number of brightness spots as Black-necked swans individuals. 189 

Sensitivity remains at high values, but Specificity and Accuracy decrease to values nearest 190 

to 0.82 (Table 2).  191 

Table 2. Confusion matrix parameters for each brightness category 192 

  Brightness  

 Category 0 Category 1 Category 2 

Precision 0.948 0.687 0.033 

Sensitivity 0.973 0.987 0.964 

Specificity 0.99 0.96 0.82 

Accuracy 0.988 0.962 0.827 

In relation to recognized predictive capacity, we found high level of accuracy in 193 

orthophotos classified as category 0 (slope =0.97, intercept= 0, adjusted R2= 0.991, Figure 194 

4a). In category 1, we found equivalent results, but with a tendency of overestimates 195 

abundance (slope= 1.33, intercept=0, adjusted R2= 0.989, Figure 4b). Finally, we found no 196 

significant linear regression between manual recount and recognizer in orthophotos 197 

classified as Category 2, indicating recognized non-accuracy for this brightness image 198 

(Figure 4c). 199 

200 
Figure 4. Recognizer predictivity capacity. We show the linear regression results between absolute 201 
abundance (manual count) and the object automatically recognized. The blue line represents the lin- 202 
ear model, and the gray confidence interval uses standard error. In (a), We present the results of 203 
orthophotos without brightness (category 0), (b) moderate brightness (category 1), and (c) high 204 
brightness levels (category 2).  205 

 206 

 207 
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4. Discussion 208 

We optimized a filtering protocol to establish an automatized system for counting 209 

black-necked swans from orthophotos. We analyzed 110 orthophotographs and com- 210 

pared manual versus automatized procedures to do this. We quantified 50752 swans by 211 

manual count, whereas the automatic recognizer estimated a total of 49262, which missed 212 

only 1653 swans (representing 3.257 % of individuals lost). The spectral filter lost 163 in- 213 

dividuals associated with the object's size. In this case, we mainly lost chicks represented 214 

by a few pixels. Consequently, we found that the spectral signature was altered with en- 215 

vironmental borders because the low number of pixels with the objects is recognized.  216 

We identified eight situations where the recognizer fails: i) When two individuals 217 

are extremely close, the spectral signature cannot separate individuals (n=251 individu- 218 

als). In this case, the shape filter excludes both individuals (Figure 5a). ii) Two individuals 219 

are extremely close and present different sizes (n=257). The spectral filter recognizes only 220 

one individual, and then the shape filter recognizes it; thus, only one individual is lost 221 

(Figure 5b). iii) young swans (n=417 individuals). We optimized the filter to recognize 222 

adult shapes and sizes; thus, young swans are discarded (Figure 5c). iv) Familiar groups 223 

(n=68 individuals). When all swans are close together, the shape filter discards all the in- 224 

dividuals (Figure 5d). v) adults cluster (n=44 individuals). In some cases, swans swim in 225 

line very close to each other (from 3 to 8 individuals), and the shape filter discards the 226 

object, losing all the individuals (Figure 5e). vi) Swans in wetland vegetation (n=85 indi- 227 

viduals). We observed that grassland distorts swans' shape, and the shape filter rejects 228 

these objects (Figure 5f). vii) Flying swans (n=8 individuals); extended wing changes the 229 

object's shape, and the shape filter rejects it (Figure 5g). viii) Orthomoisaic reconstruction 230 

(n=360 individuals). In some cases, especially in borders, orthophotos present defor- 231 

mations, seams, or gaps affecting swan shape; therefore, the shape filter rejects the objects 232 

(Figure 5h). 233 

 234 

Figure 5. False negative objects. Causes of Unrecognized Black-necked swan. (a) Two black-necked 235 
swans close together (lost both), (b) individual proximity (lost one), (c) juvenile or young swans, (d) 236 
familiar groups, (e) adults cluster, (f) Swans in wetland vegetation, (g) flying swans, (h) Image swan 237 
deformations. 238 

In orthophotos classified in category 0, we obtained near 6.1% of error in the swan 239 

identifications, similar to other works in birds and marine mammals [21,22,47]. Most au- 240 

tomatized recognizers only analyze the identification accuracy concerning manual counts 241 

but do not perform a confusion matrix; therefore, they are not evaluating the effectiveness 242 
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of the recognizers [48, 21, 18, 49]. Moreover, in most cases, the studies complete the rec- 243 

ognizer with raw data without error classification omitting availability, perception, misi- 244 

dentification, and double counting, among others [17, 48, 50, 51, 52]. By incorporating the 245 

description of the types of error and their quantification, we can know the recognizer's 246 

reliability, and we could be modified the spectral and shape parameters to increase the 247 

accuracy or establish reliability intervals.  248 

We must point out that the brightness directly affects spectral classification and over- 249 

estimates false positive objects. In general, when attempting to identify bright or white 250 

birds (i.e., black-necked swans), the most difficult elements to remove/discriminate are 251 

those related to the color white, such as glitter, flashes, and foam in the water or pale rocks, 252 

as they are very similar to the object of interest [52, 22]. Other water factors such as waves, 253 

sunshine, or water movement generates brightness in the orthophotos failing in the cor- 254 

rect object assignation or directly affecting the orthophoto construction by missing image 255 

overlapping lost meeting points [49, 22]. In our case, we obtained an overestimated black- 256 

necked swan abundance, directly associated with brightness, causing an increase of false 257 

positives and the error in identification by decreasing Accuracy and Sensitivity [49]. A 258 

similar problem was described using a thermal camera where the rock heath emission in 259 

the forest floor produces false-positive heath points similar to warm blood animals [53, 260 

54, 55]. We suggest eliminating false positives manually for these cases, mainly if they are 261 

concentrated in specific areas of the orthophoto, such as bright spots [22]. We found that 262 

brightness is generated mainly at the orthophoto edges, so we recommend increasing the 263 

sampling area. An alternative solution is incorporating a polarizer lent to the drone's cam- 264 

era. In our case, we used an ND8 filter lent (we recommended ND8 or 16). Therefore, 265 

using a polarizer or color-correcting lent can help avoid over or under-light exposition 266 

and increase the contrast between object and environment. Using these elements permits 267 

avoiding the possible errors associated with climate variables and expanding flight sched- 268 

ules. 269 

The flight transects design can influence the correct orthophotos assembly; a wrong 270 

orientation of the transect can generate that an animal in movement may be captured in 271 

two adjacent photos, which could cause a double count of the same individual (false pos- 272 

itives; [56]). A low percentage of overlapping images does not present enough meeting 273 

points between adjacent images, generating spaces without data that do not represent the 274 

terrain's reality or the appearance of shadows and shadows within the surface [22]. The 275 

literature recommended that the minimum overlap percentage to reconstruct any surface 276 

is 60% [57]. We used a 75% overlap during the first stage of sampling; later, we increased 277 

it to 80%, overlapping percentage suggested when reconstructing water, snow, and 278 

clouds, or surfaces with fewer meeting points due to their color or texture, or constant 279 

movement [22]. Drone movements, because of the wind, can also reduce the percentage 280 

of overlap between images. In some cases, wind can cause a 5 to 37% loss overlap when 281 

using 57% of overlapping [58]. In extreme cases, the wing instability produces the loss of 282 

the nadir position (the perpendicular line between the camera and the surface), causing 283 

inconsistencies between the objects' size and shape [58, 22]. 284 

We observed an increase in these errors during the breeding and rearing season. 285 

First, adults are closer together, especially breeding pairs or familiar groups. Second, 286 

black-necked swans build nests on the reed beds, and incubation is exclusively for females 287 

while males guard the nest [31]. During this period, individuals spend most of their time 288 

on the wetland vegetation, hindering automatic recognition. To avoid these complica- 289 

tions, we recommend a post-manual inspection, or as has been suggested, an increase of 290 

temporal replications or complement the automatic counting with direct observations 291 

[56]. Another option to increase the accuracy of this procedure is to build a specific recog- 292 

nizer for aggregations. For example, in the grey seal (Halichoerus grypus), where the 293 
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aggregations are of six or more individuals, Convex Envelopes over the polygons were 294 

made to discriminate between individuals and aggregations, where depending on the size 295 

of the aggregation, the number of individuals was determined [59]. In other cases, authors 296 

have used the number of pixels as a size approximation to discriminate between bird ag- 297 

gregations [26]. 298 

Aerial drone sampling is a more effective alternative to traditional sampling when 299 

monitoring birds, especially waterfowl, obtaining more accurate counts than those made 300 

by direct counts [20, 51]. Drones have been used to quantify birds' abundance under-sen- 301 

sitive to observer-generated disturbances, birds concentrated in small areas (colonies or 302 

flocks), birds inhabiting open habitats, and birds that contrast strongly with the back- 303 

ground and other image elements [22]. Our work established an automatized protocol, 304 

increasing object detection accuracy and reducing the time spent on image processing. We 305 

calculated effectiveness indices using the automatized procedures, recorded the different 306 

types of errors, and improved image analysis. Although we optimized the recognizer for 307 

the black-necked swan's classification, the steps we described are a procedure that can be 308 

generalized. It can be applied to any object recognized (animals, plants, mobile or station- 309 

ary objects). For example, we applied the same protocol to estimate the abundance of red- 310 

gartered coot (Fulica armillata). In this case, the birds' black general coloration does not 311 

permit the implementation of an efficient spectral signal filter. To solve this problem, we 312 

use a negative photographic technique to obtain a similar white spectral signature to the 313 

black-necked swans. Therefore, we increased the spectral signature resolution by modify- 314 

ing the orthophoto's original coloration spectral to achieve the best environmental/object 315 

contrast.  316 

  Automated recognizers are essential to establish long-term animal monitoring aerial 317 

surveys. We propose the following steps i) building an orthomosaic image to construct 318 

efficient automated recognizers. ii) spectral signal definition, if necessary, modify the orig- 319 

inal image coloration to obtain the best environmental/object contrast, iii) establish an Ob- 320 

ject-oriented classification based on shape, iv) perform a Confusion analysis to estimate 321 

the accuracy (and the improvement possibility) of the recognizer, and v) manual supervi- 322 

sion to estimate the number of missing objects. 323 
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